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Executive Summary 

The major impact of the research reported herein is the development of an adaptive 
algorithm that specifically addresses the rejection of discretes in the cell under test 
competing with all targets; and the rejection of distributed clutter competing with slow 
moving targets. Discretes can include large fixed clutter returns and multiple moving 
objects in the sidelobes. 

This report discusses the development of space-time adaptive processing (STAP) 
technology for ground moving target indication (GMTI) applications. Current GMTI 
systems, e.g. the E-8 Joint STARS, use non-adaptive displaced phase center antenna 
(DPCA) techniques. The Joint STARS platform has been very successful in certain 
deployments, such as the Gulf War. So the question naturally arises, why is STAP 
needed for GMTI? 

In theory, DPCA can outperform some (suboptimal) STAP implementations. DPCA 
may also perform better in highly non-homogeneous environments, where sufficient 
training data for adaptive systems is not available. However, when hardware and system 
errors are considered, the performance of DPCA degrades rapidly. For example, phase, 
and amplitude errors between channels impose a fundamental limit on non-adaptive 
DPCA processing. Adaptive processing is several orders of magnitude less sensitive to 
receiver channel errors. 

STAP has demonstrated much better clutter rejection than DPCA for high velocity 
targets. This is because an adaptive null placed in the sidelobe region by STAP is 
significantly lower than the error sidelobes that limit DPCA performance. On the other 
hand, DPCA has traditionally provided better performance in the low velocity region, 
which corresponds to the main beam clutter. The objective of this research is to extend 
the advantages of STAP in the high velocity region to lower velocity targets. This requires 
some fundamental re-design of the STAP process. Merely executing the current suite of 
STAP algorithms in the low-velocity region is inadequate. 

This report summarizes past, present and proposed future STAP research at the Air 
Force Research Laboratory, Radar Signal Processing Branch. The theme of this research 
has been to move from AMTI STAP theory to GMTI STAP for real systems. STAP 
algorithms were developed under several simplifying assumptions. The adaptive weights 
are determined statistically, based on an estimated interference covariance matrix. This 
estimation requires a large number of homogeneous data samples, i.e. sample support. 
In the real world, the received data is non-homogeneous, and the required sample 
support is not available. Special techniques must be developed to counter spatially non- 
homogeneous interference. In addition, STAP techniques ignore array electromagnetic 
effects. This issue is of importance in applying STAP to real arrays. 



The research presented here has addressed the issues of sample support and array 
effects. The sample support required is directly proportional to the number of adaptive 
weights to be determined. This report presents two algorithms, IA STAP and Joint 
Domain Localized (JDL) Processing, that yield excellent interference suppression with a 
limited number of unknowns. Array effects are addressed for the JDL algorithm through 
the use of spatial steering vectors that account for array mutual coupling. Using 
measured data, the examples present significant performance improvements by 
accounting for array effects. For non-homogeneous scenarios, we present an alternative 
Direct Data Domain (D3) processing approach. D3 algorithms do not estimate a 
covariance matrix and provide effective suppression of discrete interference. D3 

algorithms do not provide as effective suppression of spatially correlated interference as 
compared to covariance matrix based techniques. 

In non-homogeneous interference, researchers have used a non-homogeneity 
detector (NHD) to identify the non-homogeneous regions of the radar scene. The radar 
data cube is divided into homogeneous and non-homogeneous range cells. Traditional 
STAP may be applied within the homogeneous cells, though only using homogeneous 
cells for sample support. However, by definition of statistical algorithms, traditional STAP 
cannot suppress the non-homogeneous component of interference. This report presents 
the hybrid algorithm, a combination of D3 processing and JDL with the benefits of both. 
The hybrid algorithm provides effective suppression of both discrete and spatially 
correlated interference. This algorithm is a significant achievement because it (1) rejects 
discrete clutter in the test cell against which covariance matrix approaches are totally 
ineffective and (2) outperforms the D3 by 30dB against distributed mainlobe clutter. This 
performance combination is unique in STAP. 

The sum total of thirty years of research into STAP is that no single algorithm is 
optimal in all interference scenarios. Our ongoing research moves towards the 
Knowledge Based STAP (KB-STAP) concept where the adaptive algorithm and its 
associated training is chosen "intelligently" to best detect weak and slow moving targets. 
Here we present the use of terrain maps to determine the sample support for the adaptive 
process. The use of maps allows the adaptive process to choose the best representative 
sample support to estimate the clutter covariance matrix. This approach is a first step to 
the development of practical KB-STAP. 



1.0    Introduction: Why STAP for GMTI? 

Airborne surveillance radar systems operate in a severe and dynamic interference 
environment. The interference is a sum of clutter, other moving objects, possible 
deliberate electronic counter measures (ECM) and noise. The ability to detect weak 
airborne and ground targets requires the suppression of interference in real time. 
Space-Time Adaptive Processing (STAP) techniques promise to be the best means to 
suppress such interference. 

This report summarizes past, present and proposed future STAP research efforts at 
the Air Force Research Laboratory, Radar Signal Processing Branch (AFRL RRS). 
Recently AFRL RRS has focused on STAP as applied to the Ground Moving Target 
Indication (GMTI) problem. This is an on-going effort and this report details the initial 
efforts in this area. 

The processing technique presently employed for GMTI systems is displaced phase 
center antenna (DPCA). In DPCA the Doppler spectrum of the sidelobe clutter is folded 
into the mainlobe and centered at zero Doppler, thus minimizing the spread induced by 
platform motion. Theoretically, in benign interference environments, this technique can 
outperform advanced adaptive techniques (Figure 1) [1]. 
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Figure 1: Performance Comparison of Airborne Array Radar Signal Processing Techniques 

In practice, however, there are several factors that limit the performance of DPCA. 
System errors, such as the channel-to-channel mismatch, are the prime limiting factor. In 
addition, DPCA processing is heavily dependent on an assumed relationship between 
platform velocity and the radar PRI. Deviation from this relationship leads to severely 
degraded performance (Figure 2). Furthermore, at any time only a fraction of the array 
channels is used, i.e. DPCA uses the antenna aperture inefficiently. 

In contrast to DPCA, STAP uses the multiple channel receive data vector to 
determine where to place nulls: spatial nulls for point interference, such as jammers and 
space-time nulls for extended interference, such as clutter. STAP is therefore effective 



against all forms of interference, both unintentional and intentional ECM. Furthermore, 
STAP is much less sensitive (by orders of magnitude) to receiver channel errors. 
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Figure 2: Performance Loss Due to the Velocity-PRI Constraint on Target Detection 

For an accurate comparison between processing approaches, hardware errors of 
actual radars must be considered. Phase and amplitude errors in the multiple channels of 
the DPCA system impose a basic limit on non-adaptive DPCA processing. On the other 
hand, STAP is limited by channel mismatch across bandwidth and by processor hardware 
effects, such as quantization. Traditionally, STAP has been applied to the AMTI mission 
wherein the high velocity airborne targets are offset from mainbeam clutter in Doppler. 
For high velocity targets, STAP has demonstrated much better interference rejection than 
can be obtained with DPCA. This is because STAP can place an adaptive null in the 
sidelobe region that is significantly lower than the error sidelobes that limit DPCA. The 
location, depth and width of the null can be determined adaptively based on the 
interference to be suppressed. 
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Figure 3: GMTI-STAP Goal 



Extensive research into STAP for the AMTI mission, i.e. high radial velocity targets 
competing with clutter from the antenna sidelobes, has proven its superiority over current 
non-adaptive processing techniques. Looking to the future, the advantages of STAP for 
the AMTI mission needs to be extended to the GMTI mission, i.e. slow targets competing 
with clutter from the antenna mainlobe (Figure 3). This report discusses the approach 
and progress in that area. 

The theme of this report is to present the transition of space-time adaptive processing 
from AMTI as developed in theory to GMTI in practice. This report presents past, on- 
going and proposed research to support this transition to practical knowledge-based 
adaptive processing for GMTI. Section 1.0 presents a review of STAP and the issues to 
be addressed to field STAP. In particular, Section 2.0 presents the concepts of reduced 
degrees of freedom (DOF), array effects and non-homogeneous interference scenarios. 
The algorithms and concepts presented in this section represent past work at AFRL. 
Section 3.0 presents on-going work in STAP, supported by DARPA, including the new 
hybrid algorithm and MAP-STAP. These concepts are developed in support of the 
Knowledge-Based STAP concept (KB-STAP) as applied to the GMTI problem. Section 
4.0 presents proposed research enhancing STAP for the GMTI mission. Both planned 
near-term activity and possible far-term efforts are discussed. 

In this report, italicized letters denote scalars and integers, such as x and N, and 
lower case bold italic characters denote column vectors, e.g. x. Upper case bold italic 
characters such as R denote matrices, while subscripts to bold characters represent the 
entries in the vector or matrix, such as FW A superscript T denotes the transpose and the 
superscript H denotes the Hermitian transpose of a vector or matrix. 

2.0    Background 

The goal of adaptive processing is to weight the received space-time data vectors to 
maximize the output signal-to-interference plus noise ratio (SINR). Traditionally, the 
weights are determined based on an estimated covariance matrix of the interference. 
The weights maximize the gain in the look direction, while placing pattern nulls in the 
interference directions. This interference plus noise is a combination of clutter, ECM and 
thermal noise. 
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Figure 4 : Angle-Doppler Structure of Clutter 



In airborne or space radar, the clutter in a given range cell has a structure determined 
by the motion of the aircraft platform (Figure 4). The slope of the clutter ridge in angle- 
Doppler space is determined by the speed of the aircraft. In the AMTI case, the threat 
target is widely spaced from mainlobe clutter in the Doppler domain and it is possible to 
use Doppler processing to separate targets from clutter. The limitation on target detection 
is determined by the sub-clutter visibility (SCV). In the GMTI case, the problem is more 
difficult since the target is close to the mainbeam clutter in Doppler. Placing a null on 
mainbeam clutter reduces the gain on target and hence detection performance. The goal 
of GMTI is to reduce the minimum detectable velocity (MDV), the lowest velocity where a 
target can be separated from clutter. 

Traditionally, the fully adaptive (and optimal) STAP procedure determines the 
adaptive weights using an estimated covariance matrix, as given by Eqn. (1). 

w=R 1s. (1) 

In the equation, s sets the "look direction", the direction in angle and Doppler being 
tested for the presence of a target. Note that s sets the look direction only, while the 
actual target may be at a different angle-Doppler point close to the look direction. The 
covariance matrix, R, is estimated by averaging over secondary data chosen from range 
cells close to the range cell of interest (the primary range cell) as given by Eqn. (2) and 
illustrated in Figure 5. 

(2) 
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Figure 5 : Estimating the space-time interference covariance matrix 

Equations (1) and (2) illustrate the two main difficulties in applying the fully adaptive 
procedure: the number of degrees of freedom and the assumption of homogeneous data. 
Underlying several STAP approaches is a third problem, ignoring array effects. 



Computation Load: In Eqn. (1) the number of unknowns and size of the covariance 
matrix directly determines the degrees of freedom. The total computation load rises as the 
third power of the number of unknowns. Choosing this parameter is therefore crucial to a 
practical implementation of STAP. In the fully adaptive approach, the number of 
unknowns is the number of antenna subarrays (A/) times the number of pulses (M) in the 
datacube. The algorithm estimates the NM dimensional covariance matrix of the 
interference. In practice, an accurate estimate requires about 2NM to 3NM independent 
and identically distributed (i.i.d.) secondary data samples [2]. This number is very large 
making it impossible to evaluate the covariance matrix and the adaptive weights in a 
reasonable computation time. The goal of STAP research has therefore been to reduce 
the number of adaptive unknowns, while retaining performance. 

Homogeneous Data: 

Figure 6: Clutter Non-Homogeneity 

Equation (2) estimates the covariance matrix using K secondary data vectors from 
range bins close to the range cell of interest. The inherent assumption is that the statistics 
of the interference in the secondary data is the same as that within the primary range cell, 
i.e. the data is assumed homogeneous. K must be greater than twice the number of 
unknowns, between 2NM and 3NM in the fully adaptive case [2]. In practice, it is 
impossible to obtain a large number of i.i.d. homogeneous secondary data vectors. No 
clutter scene is perfectly homogeneous and most, if not all, land clutter is sufficiently non- 
homogeneous to impact performance. In addition, some regions are worse than others: 
urban clutter, land/sea interfaces (Figure 6). This leads to severely degraded 
performance. 

Array effects: Traditionally STAP algorithms were developed for proof-of-concept, 
assuming the receiving antenna array is a linear array of isotropic point sensors. In 
practice, such an array is not feasible and the elements must be of some physical size. 



This implies that the array not only receives, but also scatters the incident fields, leading 
to mutual coupling between elements. Additionally, near field scattering off the aircraft 
body has a significant impact on how the array receives incident signals. Ignoring array 
effects leads to significantly degraded STAP performance. 
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KB MAP 
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I STAP 

Direct Data 
Domain 

Algorithm 

Figure 7: Past and Proposed STAP efforts 

AFRL's efforts in STAP have addressed these concerns to enable the transition from 
theory to practice. Current efforts address the concerns listed in this section while 
extending STAP to mainbeam clutter rejection and the GMTI problem. In addition, AFRL's 
expertise is also being extended from monostatic radar to bistatic radar. This report 
summarizes our approach to addressing these issues for GMTI (Figure 7). The rest of 
section 2.0 summarizes the approaches developed to mitigate the impact of the above 
concerns. Section 2.1 presents EA-STAP and section 2.2 presents Joint Domain 
Localized (JDL) Processing as reduced rank (low DOF) alternatives to traditional fully 
adaptive STAP. Section 2.3 presents JDL processing while accounting for array effects, 
such as mutual coupling and near field scattering from the aircraft body. Section 2.4 
presents a non-homogeneity detector to deal with non-homogeneous received data, while 
section 2.5 presents an alternative, non-statistical, approach to STAP developed 
specifically for the non-homogeneous data case. 

The various techniques presented in this section represent past AFRL work in the 
transition from STAP theory to practice. They form a critical component of any future 
proposed adaptive surveillance system for GMTI. 
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2.1     Sigma-Delta STAP 

Historically, XA-STAP was proposed to minimize the number of adaptive degrees of 
(i-eedom, and consequently, the computation load. However a (possibly) more important 
property of ZA-STAP is the use of only one sum (X) and one or more difference (A) 
beams. For STAP, a phased array with digitized channels is commonly viewed as 
necessary. Although significant progress is being made on the phased array front-end 
electronics, the employment of any STAP scheme with a large number of channels 
imposes its own set of performance requirements. This is particularly true in terms of 
channel matching. The high performance required of the electronics in these systems 
thus makes cost an important issue. ZA-STAP addresses this issue of affordability, as 
well as concerns about the clutter non-homogeneity, channel-to-channel calibration and 
response pattern effects [3]. 

XA-STAP is unique in that it can be retrofitted onto any antenna with analog sum and 
difference beams. Antenna engineers have excelled in the design of high performance 
sum and difference beams, whether for phased array or for reflector antennas [4]. This is 
particularly true in airborne radars where the sum and difference beams are already 
implemented for monopulse tracking and/or motion compensation. 

In this section, we first present the XA-STAP principle and algorithms with multiple 
difference beams. We assume in this work that Wideband Noise Jammers (WNJs) have 
been suppressed before entering XA-STAP, by spatial-only processing (e.g., multiple 
sidelobe cancelers) incorporated with the sum beam and each difference beam [5] We 
identify the advantages and limitations of this STAP approach. 
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2.1.1   IA-STAP Algorithm Development 
From Phased Array Beamformer or 

Reflector Antenna with I -A Feed System 

A (difference) 
, Channel(s) 

I (sum) 
Channe i 

Receiver 
&A/D 

Receiver 
&A/D 
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Figure 8: Block Diagram of General ZA-STAP 

Figure 8 illustrates the block diagram of general ZA-STAP where the processor's 
spatial DOF is determined by Nps, the number of A-beams. Much of this block diagram 
follows the general STAP configuration of [3]. The variations from the block diagram of 
Fiqure 8 depend only on the choices of the A-beams, the temporal DOF reduction 
approaches, and the joint-domain adaptive filtering-CFAR (constant false alarm rate) 
algorithms. The algorithm development also makes use of the fact that the A-beams have 
deep central nulls in the look direction. 

Note that in the block diagram of Figure 8, the sum and difference channels are 
digitized as opposed to the individual elements themselves. IA-STAP treats these 
channels as equivalent spatial channels and applies adaptive processing to the digitized 
sum and difference channels. The temporal data from the I and A channels over the M 
pulses in a coherent pulse interval (CPI) can be transformed to the Doppler domain, 
resulting in further DOF reduction. 

Let x£ a length M data vector, be the sum-channel data of a range cell before the 
temporal DOF reduction. Let xA, be the length NpsM stacked delta-channel data, 
corresponding to A/ps A-beams, of the same range cell before temporal DOF reduction^ If 
A/p, is the number of unknowns in the temporal domain after DOF reduction, the number 
of DOF is A/pt-1. The data after reduction can be expressed as 
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S,=Qwxr, (3) 

and 

xA=Kj®Q"]xA, (4) 

where Q is a matrix of order MxNpi that represents the temporal DOF reduction and <8> 
represents the Kronecker product of two matrices. l(A/ps) is the identity matrix of order A/ps. 

Xr is the post-reduction sum channel data of order A/pt x 1 and XA is the post-reduction 
difference channel data of order A/pt A/ps x 1. The tilde (~) above the data vectors 
represents the post-reduction data. 

Let st, Mx 1, be the temporal steering vector of a chosen Doppler bin and denote 

S = QHSt (5) 

to be the post-reduction temporal steering vector. Denote the stacked data vector 

x = (6) 

Note that x simply represents the sum and difference channels after temporal DOF 
reduction stacked into a convenient form. The "maximum likelihood" estimate of the 
correlation matrix can be written as 

where 

R = 
R XL 

'AZ 

'1A 

'M 
(7) 

1   K 

(8) 

with %k, k=\,...K being secondary data samples from nearby range cells. The 
adaptive weights are then obtained from Eqn. (1) with the covariance matrix replaced by 
the estimate given in Eqn. (8). The steering vector is replaced by the post-reduction ZA 
steering vector, 

s = 
s, 

(9) 
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A target at the primary range cell is declared if the modified sample matrix inversion 
(MSMI) statistic is above a chosen threshold (770). 

2 

H, wHx 
VMSMI = ~HA-,~  <   1o- (10> S  R  S  H0 

2.1.2   Numerical Example 

As a numerical example, we compare the performance of EA-STAP with the factored 
approach (FA-STAP) and conventional non-adaptive pulse-Doppler (PD) processing. 
The array is comprised of 16 elements, with each CPI comprising 16 pulses. This 
example uses a single A-channel and temporal DOF reduction reduces the 16 pulses to 3 
Doppler bins. As such, there are only 6 unknown weights to be determined: the sum and 
difference beams in space for 3 Doppler bins. The sum pattern is generated using 35dB 
Taylor weights and the difference pattern using 30dB Bayliss weights. Possible array 
errors are modeled as complex Gaussian multiplicative random variables at the element 
and beamformer level. This example uses a 2% magnitude, 2° phase standard deviation 
at the element level and a 3% magnitude, 3° phase standard deviation at the beamformer 
level. The clutter is modeled as Gaussian interference. 

Figure 9 compares potential output SINR versus target Doppler for four cases, the 
fully adaptive case, EA-STAP, FA-STAP and traditional, non-adaptive, PD processing [6]. 
As can be seen, the performance of EA-STAP is significantly better than both FA-STAP 
and PD processing. Of special interest is the performance improvement at low Doppler 
frequencies, which correspond to low target velocities and consequently the GMTI case. 

This example illustrates the significant gains associated with EA-STAP. Working with 
only a limited set of unknowns, EA-STAP yields better performance at low Doppler 
frequencies than algorithms with much higher unknowns (and computation loads). 
Furthermore, since only the sum and difference beams are used, the algorithm can be 
applied even if these beams are obtained using analog beamformers. 
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Figure 9: Performance of EA-STAP compared to Pulse Doppler processing 

2.1.3  Discussions: Advantages and Limitations 

We summarize the advantages of the EA-STAP approach and its limitations. With as 
few as two spatial channels, Figure 9 shows that the EA-STAP approach can lead to 
clutter suppression performance potential higher than other STAP approaches that 
require many more unknowns and much higher secondary data support. The following 
includes its advantages (and some limitations) over other approaches: 

Applicability to Existing Systems: With other approaches, the application of STAP 
requires new hardware, from expensive phased arrays to multichannel receivers. In 
contrast to those approaches, therefore, EA-STAP can be applied to existing radar 
systems, both phased array and continuous aperture. It simply requires digitizing the 
monopulse difference channel, or making relatively minor antenna modifications to add 
such a channel. Such a relatively low cost add-on can significantly improve the clutter 
suppression performance of an existing airborne radar system. 

Data Efficiency. Correlation matrix estimation for EA-STAP can be performed with fewer 
than 20 data vectors. This feature provides good performance in severely non- 
homogeneous environments where many other STAP approaches may break down, 
regardless how high their performance potentials are with known clutter statistics. 

Channel Calibration: Channel calibration is a problem for many other STAP 
approaches. In order to minimize performance degradation, the channels with many 
other STAP approaches must be matched across the signal band, and steering vectors 
must be known to match the array.   The difficulty and performance impact of channel 
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calibration has often been underestimated. In contrast, EA-STAP uses as few as two 
channels to begin with and its corresponding signal (steering) vector remains of known 
and simple form as long as the central null of the A-beam is correctly placed. Therefore, 
EA-STAP greatly simplifies calibration issues in practice. 

Response Pattern: STAP has long been known to have hard-to-predict spatial response 
patterns that are often undesirable in some applications, e.g., very high sidelobe levels in 
some interference-free regions, loss of mainlobe gain, and significantly shifted mainlobe 
peak. With only two spatial channels and with the critical null location of the A-beam, EA- 
STAP offers much more desirable and predictable response patterns than many other 
STAP approaches with excessive DOF. 

Computation Load: While the trend is toward more affordable computing hardware, 
STAP processing still imposes a considerable burden which increases sharply with the 
order of the adaptive processor and radar bandwidth. In this respect, EA-STAP reduces 
computational requirements in order N3 adaptive problems. Moreover, the sparse steering 
vector can be exploited to further reduce numerical computations. 

Affordability. Affordability has long been an issue with STAP-based systems. Analog 
beamforming and minimization of the number of digitized receiver channels provides a 
substantial payoff in total system cost. Reliability is increased and maintenance costs are 
reduced by simplifying system interconnects. EA-STAP therefore greatly reduces system 
cost. 

Limitations: In the case of Doppler ambiguities, any system with only two (or few) 
channels will not meet the required DOF for clutter suppression. EA-STAP is not 
exceptional in this regard. Additionally, we have established the advantages of the 
presuppression of WNJs with the needed number of auxiliary channels [5], we do not 
view that the EA-STAP is limited to jammer-free applications. However, there is a need for 
additional hardware for operation in the presence of jammers. 

In summary, EA-STAP is a very natural combination of the traditional antenna-design 
based approaches and "modern" signal processing based approaches, making the best 
use of the strengths of each and avoiding their weaknesses. The advantages of EA- 
STAP, especially applicability to existing radar systems, far outweigh the limitations of this 
adaptive processing method. 

The next section presents another low computation load algorithm: Joint Domain 
Localized Processing. 
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2.2     Joint Domain Localized Processing in the Ideal Case 

To overcome the drawbacks of the fully adaptive algorithm, researchers have limited 
the number of adaptive weights to reduce problems associated with sample support and 
computation expense. Wang and Cai [7] introduced the JDL algorithm, a post-Doppler, 
beamspace approach that adaptively processes the radar data after transformation to the 
angle-Doppler domain. Adaptive processing is restricted to a localized processing region 
(LPR) in the transform domain, significantly reducing the number of unknowns while 
retaining maximal gain against thermal noise. The reduced DOF leads to corresponding 
reductions in required sample support and computation load. 

This section develops the JDL algorithm as applied to the case of an ideal array. 
Based on the assumption of a linear array of equispaced, isotropic, point sensors, the 
space-time data is transformed to the angle-Doppler domain using a two dimensional 
Fast Fourier Transform (FFT). Under certain restrictions, this approach is valid because 
the spatial and temporal steering vectors form Fourier coefficients [8, pp. 12-17]. In order 
to highlight the restrictions placed on the algorithm by the original formulation, this section 
clarifies the original development of Wang and Cai [7]. Section 2.3 extends the JDL 
algorithm to account for array effects and illustrates the performance of the JDL algorithm. 

Propagating Wave 

Figure 10: Linear Array of Point Sensors 

Consider an equispaced linear array of N isotropic, point sensors as shown in Figure 
10. Each sensor receives data samples corresponding to the M pulses in a CPI. 
Therefore, for each range bin, the received data is a length MN vector x whose entries 
numbered mN to [(m + 1) N -1] correspond to the returns at the N elements from pulse 
number m, where m = 0,1,.. .M-1. The data vector is a sum of the contributions from the 
external interference sources, the thermal noise and possibly a target, i.e. 
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x = £s(0,f4)+c + n dl) 

where c is the vector of interference sources, n is the thermal noise and \ is the target 
amplitude, equal to zero in range cells without a target. The term s(0t/t) is the space-time 
steering vector corresponding to a possible target at look angle <j\ and Doppler frequency 
f\. The steering vector can be written in terms of a spatial steering vector a(#) and a 
temporal steering vector b(/t) [8], 

s{<ptft) = b{ft)®a(<pt), 02) 

a(&) = [1 a'2*- ey(2)2^ ... el{N~^ J, (13) 

b(f)=\\ e'2Mf,/fR ei(-2)2n,,/fR.. gAM-i^/foP" /14\ 

where /s is the normalized spatial frequency given by fs = (c//>t)sin<tH, X the wavelength 
of operation and /R the pulse repetition frequency (PRF). 

The spatial steering vector a {<p) is the magnitude and phase taper at the Nelements 
of the array due to a far field source at angle <p. Owing to electromagnetic reciprocity, to 
transmit in the direction of ^the elements of the array must be excited with the conjugates 
of the steering vector, i.e. the conjugates of the steering vector maximize the response in 
the direction <j>. Transformation of spatial data to the angle domain at angle <p therefore 
requires an inner product with the corresponding spatial steering vector. Similarly, the 
temporal steering vector b (/) corresponding to a Doppler frequency / is the magnitude 
and phase taper measured at an individual element for the M pulses in a CPI. An inner 
product with the corresponding temporal steering vector transforms time domain data to 
the Doppler domain. The angle-Doppler response of the data vector x at angle </> and 
Doppler / is therefore given by 

x(^)=[b(0®aW]Hx, (15) 

where the tilde (~) above the scalar x(<f>,f) signifies the post-transform angle-Doppler 
domain. Choosing a set of spatial and temporal steering vectors generates a 
corresponding vector of angle-Doppler domain data. 

Equations (12)-(14) show that for an ideal array the spatial and temporal steering 
vectors are identical to the Fourier coefficients. Based on this observation, the 
transformation to the angle-Doppler domain can be simplified under two conditions. 
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If a set of angles are chosen such that {d/X sin <)>) is spaced by 1/A/ and a set of 
Doppler frequencies are chosen such that {f/JRi is spaced by MM, the 
transformation to the angle-Doppler domain is equivalent to the 2D.DFT. 

If the angle $ corresponds to one of these angles and the Doppler /corresponds 
to one of these Dopplers, the steering vector is a column of the 2-D DFT matrix 
and the angle-Doppler steering vector is localized to a single angle-Doppler bin 
(Figure 11). 

)0000000 
)0000000 
>OOOOOOa—3x3 LPR 
OOQQQQO 
oopoaoo 

Target localized 
)0000000     t     |    .   hin >ooooooo    t0 sin9,e Din 

)0000000 
JOOOOOOO 

Angle Bins 

Figure 11: Localized Processing Regions in JDL for t]a - TJ^ = 3 

The JDL algorithm as originally developed in [7] assumes both these conditions are 
met. This simplification is possible only in the case of the ideal, equispaced, linear array 
of Figure 10. Owing to beam mismatch, the localization to a single point in angle-Doppler 
space is only exact for the look steering vector. 

As shown in Figure 11, a LPR centered about the look angle-Doppler point is formed 
and interference is suppressed in this angle-Doppler region only. The LPR covers rja 

angle bins and T]ü Doppler bins. The choice of r/a and TJ^ is independent of N and M, i.e. 
the localization of the target to a single angle-Doppler bin decouples the number of 
adaptive degrees of freedom from the size of the data cube, while retaining maximal gain 
against thermal noise. The covariance matrix corresponding to this LPR is estimated 
using secondary data from neighboring range cells.   The adaptive weights are then 

calculated using Eqn. (1). The estimated covariance matrix Ris replaced with fi, the 
estimated angle-Doppler covariance matrix corresponding to the LPR of interest. The 
steering vector s is replaced with the angle-Doppler steering vector s, i.e. 

w=R"1S. (16) 

The number of adaptive unknowns is equal to rjarj^. The steering vector for the 
adaptive process is the space-time steering vector s of Eqn. (12) transformed to the 
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angle-Doppler domain.   Under the two conditions listed above s is given by the length 
/7a77d vector 

s = [0,0,..., 0,1,0,... 0,0]T. (17) 

It must be emphasized that this simple form of the steering vector is valid only 
because the DFT is an orthogonal transformation. The space-time steering vector is 
transformed to angle-Doppler using the same transformation used for the data. 

2.3     JDL Processing Accounting for Array Effects 

Sections 2.1 and 2.2 presented two adaptive processing algorithms that address the 
issue of minimizing the number of adaptive unknowns while maintaining system 
performance. Reducing the number of unknowns leads to corresponding reductions in 
required sample support (to estimate the covariance matrix) and computation load (to 
obtain the adaptive weights). This section addresses a second major concern: the impact 
of mutual coupling between the elements of the array and the scattering off the aircraft 
body. The results in this section were published in [9]. 

When applying the JDL algorithm to measured data, a crucial assumption in the 
development of [7] is invalid. The elements of a real array cannot be point sensors. 
Owing to their physical size, the elements of the array are subject to mutual coupling. 
Furthermore, the assumption of a linear array is restrictive. A planar array allows for DOF 
in azimuth and elevation. Therefore the Fourier coefficients do not form the spatial 
steering vector and a DFT does not transform the spatial data to the angle domain. In 
this case, a DFT is mathematically feasible but has no physical meaning. 

In a physical array, the spatial steering vectors must be measured or obtained using a 
numerical electromagnetic analysis. These steering vectors must be used to transform 
the space domain to the angle domain. This transformation is necessarily non-orthogonal 
with a corresponding spread of target information in the angle-Doppler domain. The 
assumptions listed in Section 2.2, therefore, cannot be met in practice. Earlier attempts to 
apply JDL to a real array ignored the non-orthogonal nature of the measured spatial 
transform [10]. 

This section replaces the DFT-based transformation described in Section 2.2 with a 
generalized transformation matrix. The key contribution of this new approach is the 
accounting for the array effects, thereby eliminating the two stipulations on the original 
JDL algorithm. This formulation can now be applied to physical arrays of arbitrary 
configuration. The modification results in significantly improved detection performance. 

In the JDL algorithm, only data from within the LPR is used for the adaptation 
process. The transformation from the space-time domain to the angle-Doppler domain is 
an inner product with a space-time steering vector, an argument that holds true for ideal 
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linear arrays and physical arrays. Mathematically therefore, the relevant transformation to 
within the LPR is a pre-multiplication with a (A/M x 77^) transformation matrix. The 
transformation process is 

%LPR = T"x. (18) 

For example, for an LPR of 3 angle bins (((M, fo, <|>i; 77a=3) and 3 Doppler bins (/.1, /0, 
/1; ^/d=3) 

T = [b(f_i) €> a(^) b(f_i) ® a(^0)  bfe) <8> afo) 

b(f0) <8> a(^) b(f0) <8> a(^0) b(f0) <S> afo) 

bft)®a(*-i) bft)®a(A>)  bft)®afa)L 19) 

= [bfc) b(0 b(0]<8)[a(^) afo,) afa)l 

In [7], to achieve the simple form of the angle-Doppler steering vector given by Eqn. 
(17), the use of a low sidelobe window to lower the transform sidelobes is discouraged. 
However, the use of such a window may be incorporated by modifying the transformation 
matrix of Eqn. (19). If a length A/taper ts is to be used in the spatial domain and a length 
of Mtaper tt in the temporal domain, the transformation matrix is given by 

T = [tt.b(t,)t,.b(f0) t,.b(0]® 
[ts.a(^)t8.a(A)ts.a(^)] (20) 

where • represents the Hadamard product, a point-by-point multiplication of two 
vectors. 

The angle-Doppler steering vector used to solve for the adaptive weights in Eqn. (16) 
is the space-time steering vector, transformed to the angle-Doppler domain via the same 
transformation matrix T, i.e. 

s = T"s (21) 

Note the transformation matrix defined in Eqn. (20) is defined for the chosen Doppler 
frequencies and angles without any restrictions on their values. No assumption is made 
about the form of the spatial or temporal steering vectors, i.e. the use of a transformation 
matrix eliminates the two restrictions of the original JDL formulation. 

In the case of a linear array of isotropic point sensors, the ideal steering vectors are 
obtained from Eqns. (13) and (14). If the angles and Doppler frequencies satisfy the 
conditions listed in Section 2.2, the transformation matrix T reduces to the relevant rows 
of the 2-D FFT matrix. The FFT-based formulation is equivalent to choosing a spacing in 

19 



the angle domain such that [(d/?i)Asin(<|))]=1/A/ and in the Doppler domain of Af=1/M 
Furthermore, if both the look angle and Doppler correspond to one of these angles and 
Dopplers, the transformed steering vector of Eqn. (21) is equivalent to the steering vector 
of Eqn. (17). The formulation of [7] is therefore a special, not necessarily optimal, case of 
the more general formulation presented here. 

For a real array, the steering vector associated with a given angle is the measured 
magnitude and phase taper due to a calibrated far-field source. If measurements are not 
available, the steering vectors can be obtained from a numerical electromagnetic analysis 
of the receiving antenna. These steering vectors include array effects and the effects that 
the aircraft body has on the reception of signals. Usually, even in the case of a real array, 
the pulses are equally spaced in time and hence the temporal steering vector is 
unchanged. In the case of a real array, the spatial component in Eqn. (12) must be 
replaced with a measured steering vector, i.e. the space time steering vector is: 

s(<pt,ft) = b(ft)®aM, (22) 

where am(0t) is the measured steering vector corresponding to angle <j)\. Similarly the 
spatial steering vectors in the transformation matrix of Eqns. (19) and (20) must be 
replaced with the corresponding measured steering vectors. 

Melvin and Himed [10] applied the JDL algorithm to measured data and used the 
measured steering vectors to transform the space domain to the angle domain. In effect, 
without explicitly stating so, they use a transformation matrix in the spatial domain and a 
DFT in the temporal domain. The spacing between the angles chosen for the LPR is 
determined by the available measured steering vectors. The spacing between the 
Doppler frequencies is fixed by the DFT. Crucially, the resulting change on the angle- 
Doppler steering vector is ignored and they assume the simplified form of the steering 
vector in Eqn. (17) is valid. However, the use of a different transform from the spatial 
domain to the angle domain violates the assumptions listed in Section 2.2. 

2.3.1   Multi-Channel Airborne Radar Measurements (MCARM) 

The discussion above dealt with applying the JDL algorithm to real arrays by 
accounting for array and airframe effect. The performance improvements over the original 
JDL algorithm are presented here using data from the MCARM database. 
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Figure 12: MCARM Testbed 

Figure 13: MCARM Antenna Array 

The MCARM program had as its objective the collection of multiple spatial channel 
airborne radar data for the development and evaluation of STAP algorithms for future 
Airborne Early Warning (AEW) radar systems. The Air Force Research Laboratory 
contracted with Northrop Grumman to develop the measurement capability and to 
accomplish the flight tests [11,12]. 

Under the MCARM program, some Northrop Grumman ground moving target 
indication (GMTI) data was collected with and without vegetation to evaluate foliage 
penetration (FOPEN). Mono-static data was collected at PRFs of 7 kHz, 2 kHz, and 500 
Hz. The MCARM data was collected by Northrop Grumman during flights over the 
Delmarva Peninsula and the east coast of the US. There were a total of eleven flights 
with more than 50 Gigabytes of data collected. 

To leverage current computer and software technology AFRL has implemented a 
web site at http://128.132.42.229/. A researcher can access the site, fill out, and submit 
an application to obtain access to the processed radar data. Also available are copies of 
the Northrop Grumman final report and relevant research papers. Once the researcher's 
application is approved, data can be retrieved from the web site for internal use. The data 
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we are using for this effort has been obtained from this site. We chose this data because 
of its varied and heterogeneous clutter environment. 

The airborne MCARM testbed, a BAC1-11 aircraft, used for these measurements is 
shown in Figure 12. The sensor is hosted in an aerodynamic cheek-mounted, mounted 
just forward of the left wing of the aircraft. The L-band (1.24GHz) active array consists of 
16 columns, with each column having two 4-element subarrays (Figure 13). The 
elements are vertically polarized, dual-notch reduced-depth radiators. These elements 
are located on a rectangular grid with azimuth spacing of 4.3 inches and elevation 
spacing of 5.54 inches. There is a 20 dB Taylor weighting across the 8 elevation 
elements resulting in a 0.25 dB elevation taper loss for both transmit and receive. The 
total average radiated power for the array was approximately 1.5 kW. A 6 dB modified 
trapezöid weighting for the transmit azimuthal illumination function is used to produce a 
7.5° beamwidth pattern on boresight with -25 dB rms sidelobes. This pattern can be 
steered up to ±60°. 

Of the 32 possible channels, only 24 receivers were available for the data collection 
program. Two of the receivers were used for analog sum and azimuthal difference 
beams. There are therefore 22 (A/=22) digitized channels which, in this work, are 
arranged as rectangular 2x11 array. Each CPI comprises 128 (/W=128) pulses at a PRF 
of 1984Hz. 

15 20 
Element Number 

Figure 14: Magnitude of MCARM steering vectors 

In the ideal case of a linear array, Eqn. (13) shows that the magnitude of the steering 
vector is constant at each element. Figure 14 shows the variation in magnitude for the 
MCARM array. The magnitude varies by as much as 4dB over the 32 elements. This 
variation is due to the mutual coupling between the elements of the antenna array. 
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2.3.2  Example 1. Injected target 

In the first example, a synthetic target of fixed amplitude, direction, Doppler and range 
is injected into the MCARM data set. The amplitude and phase variation of the injected 
target across the 22 channels is obtained from the measured steering vectors. The 
amplitude of the injected target is chosen such that it remains undetected by non-adaptive 
pulse-Doppler processing. 

JDL processing is performed at the target angle bin, for a few range bins surrounding 
the injected target and for all Doppler bins. In this example, the figure of merit used to 
compare the two scenarios is the separation between the MSMI statistic at the target 
range/Doppler bin and the highest statistic at other range or Doppler bins (the largest 
false alarm statistic). A large separation implies a large difference between target and 
residual interference, i.e. improving the ability to detect the target. 

In this example, the data from acquisition 575 on flight 5 is used. The parameters of 
the injected target are: Amplitude = 0.0001 Z0°, Angle bin = 0° (Broadside), Doppler bin = 
-9 (-139.5Hz), Range bin = 290 

Figure 15 plots the MSMI statistic, as a function of range bin for the two scenarios 
considered. In the first case, a strong false alarm several dB over the target is clearly 
visible. In the second case, target clearly stands out over the nearest false alarm. The 
false alarm is somewhat suppressed, but more crucially, the gain on the target and hence 
the target statistic is significantly improved. Accounting for the non-orthogonal nature of 
the steering vectors yields an improvement of 7.1 dB. 
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Figure 15: JDL performance before and after accounting for array effects (Injected Target) 

2.3.3   Example 2: MTS Tones 

On flight 5, acquisition 152 includes clutter and tones from a moving target simulator 
(MTS) at pre-selected Doppler frequencies. Five tones are received at approximately - 
800 Hz (0 dB), -600 Hz (-14 dB), -400 Hz (-20 dB), -200 Hz (-26 dB) and 0 Hz (-31 dB). 
The data in this acquisition are returns from 128 pulses measured across 22 channels. 
The pulse repetition frequency for this flight was 1984 Hz, hence the separation of 200 Hz 
corresponds to nearly 13 Doppler bins. Using an acquisition with the MTS allows us to 
compare the performance of the JDL algorithm in the above scenarios using measured 
data. The MTS tones are processed like returns from moving targets. The presence of 
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five MTS tones of differing amplitudes makes it difficult to define a unique figure of merit 
to compare the two scenarios. In this example, a visual inspection is used for 
comparison. 

Doppler Bin 

DopplerBin 

Figure 16: JDL before and after accounting for array effects (MTS Tones) 

Figure 16 plots the MSMI statistic versus Doppler bin for the two cases considered. In 
the first plot, the five tones are clearly visible with the strongest tone at bin -53 spread 
over Doppler space. A few spurious tones are also visible. The second plot shows the 
results of the JDL algorithm modified by Eqn. (21). The five tones are clearly visible and 
the spurious tones are completely suppressed. 
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Figure 15 and Figure 16 demonstrate the importance of and performance 
enhancements possible by accounting for array effects. The traditional formulation for 
JDL ignored the fact that real world arrays are not comprised of isotropic, point sensors. 
Accounting for the array effects leads to huge improvements in performance, as applied 
to measured data. 

2.4     Non-Homogeneity Detection/Knowledge Based Processing 

This section presents the third of the key issues that limit the performance of 
adaptive processing algorithms in real world applications: the non-homogeneous and 
dynamic background environments typically observed from airborne radar. Non- 
homogeneous data is the most significant of the three issues that we discuss. Significant 
processing losses result from mismatches between the environment and the processing 
algorithms. Recent work has shown that it is essential to sense the actual environment, 
and then to match end-to-end processing to this environment. Moreover, the processing 
should be "intelligent"; the radar processor should learn from the environment. 
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Figure 17: Secondary Data Selection (a) Homogeneous Case (b) Non-homogeneous Case 

In the filtering and detection stages of the radar processing chain, training data are 
selected about the cell under test, and that training data is used to represent the 
interference in the cell under test.  Conventional constant false alarm rate (CFAR) and 
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space-time adaptive processing (STAP) algorithms use a symmetric sliding window about 
the cell under test in order to select the training data as shown in Figure 17(a). This 
assumes that the data is homogeneous and i.i.d. To quote [13] "A data set is termed wide 
sense homogeneous if the system performance loss can be ignored or is acceptable for a 
given STAP algorithm. A data set is said to be wide sense non-homogeneous if it is not 
wide sense homogeneous". In the real world, wide sense homogeneity is routinely 
violated, leading to sub-optimum performance. 

Improved methods are needed to more carefully select processing based on the 
environment. For detection and filtering, this means better selection of training data, 
requiring non-symmetric secondary data samples be selected. As shown in Figure 17(b) 
these secondary data samples must best represent the interference, or at least the 
homogeneous component of the interference, in a statistical sense. 

The non-homogeneity detector (NHD) must be matched to the processing at hand. 
For example, a non-homogeneity that impacts on the performance of FA-STAP has no 
impact on the performance of the JDL algorithm if it falls in a natural null of the 
transformation to the angle-Doppler domain. Transforms to other domains may therefore 
be necessary. Figure 18 shows non-homogeneity detection in two different domains. In 
the upper path, range-pulse-element data cubes are transformed into angle-Doppler 
space for non-homogeneity detection in a two-dimensional LPR. This form of NHD is well 
suited for the JDL algorithm. In the lower path, a one-dimensional transform is executed 
and non-homogeneity detection is performed in element-Doppler space. The nature of 
the data may also dictate whether full- or reduced-dimension adaptive algorithms be 
executed. If the sample support is severely limited, direct data domain, non-statistical, 
adaptive algorithms may be required. 
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Figure 18: Non-Homogeneity Detection in LPR and in Factored Approaches 

Recent developments in non-homogeneity detection allow for better selection of 
training data. AFRL has been investigating a variety of non-homogeneity detection 
techniques including application of the Generalized Inner Product and multi-pass STAP. 
In multi-pass STAP techniques, a first filtering stage serves as the non-homogeneity 
detector (NHD). A second stage then performs the filtering function. This formulation will 
be explained in detail later in this report. 

Using a NHD provides significant performance improvement over conventional 
methods. However, once non-homogeneous cells have been identified, how are these 
cells handled in the filtering and detection processes? By definition, the non- 
homogeneous cells are not like neighboring cells, so it is not appropriate to use traditional 
statistical techniques, which estimate the interference in the cell under test by covariance 
matrix estimation. To address these cases, AFRL is continuing to develop hybrid STAP 
techniques that combine direct data domain (non-statistical) and sample covariance 
matrix based (statistical) adaptive processing. 

2.5     Direct Least Squares Approach 

The inability of traditional statistical algorithms to counter the non-homogeneous 
component of interference motivates research in non-statistical or direct data domain (D3) 
algorithms. 
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In [14] an algorithm is developed that optimizes the signal to interference in a least 
squares sense for signals at the angle at which a look-direction constraint is established. 
This method minimizes, in a least squares sense, the error between the received voltages 
(signal plus interference) and a signal from the assumed angle. This approach does not 
employ data from outside the radar range cell being evaluated, i.e. this approach does not 
require secondary data. This makes the D3 an attractive alternative in non-homogeneous 
clutter. This is especially true in a severely non-homogeneous clutter environment of 
urban and land/sea interfaces. The D3 approach has recently focused on one- 
dimensional spatial adaptivity [14]. This section introduces a new two-dimensional space- 
time D3 algorithm based on the one-dimensional algorithm of [14]. 

wn X(n+1)m 

Xnm-2* X(n+1)m 

Figure 19: Principle of Direct Data Domain Processing 

Consider the A/-element uniformly spaced array shown in Figure 19. For a look 
direction of <fc, the signal advances from one element to the next by the same phase 
factor Zs=[exp(/2flsin(#)]. The term obtained by the subtraction operation in Figure 19 is 
therefore free of the target signal and contains only interference terms. The D3 algorithm 
minimizes the power in such interference terms while maintaining gain in the direction of 
the target. 

To best present the D3 algorithm, the data from the N elements due to the M pulses in 
a CPI is written as a NxM matrix X whose ni* column corresponds to the N returns from 
the nih pulse, represented by x(m). The data matrix is a sum of target and interference 
terms. Rewriting Eqn. (11) in terms of matrices 

x = fsfo,/;)+c+N. (23) 

Define the Mx(N-1) matrix A to be 

X     - 7~1X 

A = ^01      Zs **11 

X    - z~1X ^10      ^S /v20 

11      ^s A21 

X -7_1X X -?"1X A0CM-1;      ^S AVM-1J      A1(M-1;      *S A2fiW-1j 

X - 7"1X 

*(N-2fl ~ ZS XfN-i;i 

X - 7"1X 

(24) 
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where Ze, as defined earlier, is the phase progression of the target signal from one 
element to the next. Theoretically, the entries of A are interference terms only, though due 
to beam mismatch there may be some residual signal power. However, unless the target 
is significantly off the look direction/Doppler, the target signal is effectively nulled. In case 
the target is significantly off the look direction, it must be treated as interference: in a 
surveillance radar, targets must be declared only if they are in the look direction. In fact, 
sidelobe targets are an example of the discrete, non-homogeneous, interference that 
drives this research. 

Consider the following scalar functions of a vector of spatial weights ws 

:   WsaC0.W-2;a('0./V-2/)Ws' w, 
u 

Ws**(0:N-2) 

L = w A w, = w"ArA*ws, (25) 

where |||| represents the 2-norm of a vector and a(o:w-2) represents the first A/-1 entries 
of the spatial steering vector. In the equation, A*ws is used to remain consistent with the 
term ws a(0:/v-2) in that the weights multiply the conjugate of the data. 

The term G in Eqn. (25) represents the gain of the weight vector ws at the look angle 
<th, while the term / represents the residual interference power after the data is filtered by 
the same weights. Hence, the term R is the difference between the gain of the antenna at 
the look Doppler and the residual interference power. The term AT in the definition of R is 
an emphasis parameter that will be described later. The D3 algorithm finds the weights 
that maximize this difference. Mathematically, 

max   fR   ,_ maxu       *. 1 

(26) 
= ||wf|  =1Wria(0.W-2)a(0.W-2)_X'2ArA  JW,, 

where the constraint ||wj2 = 1 is chosen to obtain a finite solution. Using the method 

of Lagrange multipliers, it can be shown that the desired temporal weight vector is the 
eigenvector corresponding to the maximum eigenvalue of the (A/-1)x(/V-1) matrix 
La(o.w-2)a(o.w-2)-Ä'2ArA*J. This formulation yields a spatial weight vector of length (A/-1). 

The loss of one DOF represents the subtraction operation in defining the entries of A. 

Analogous to the spatial adaptive weights, the temporal weight vector wt is the 
eigenvector  corresponding   to  the   largest   eigenvalue   of  the   (A//-1)x(/W-1)   matrix 

30 



P(o.M-2)b(o.M-2)-K"2BrB*J' where bp-MZ) is the vector of the first (M-1) entries of the 

temporal steering vector defined by Eqn. (14) and B is the /Vx(M-1) matrix 

B = 

X      -7X 

*"\0 ~ Zt*-\1 

^01      Zf^01 

*11 ~zt*w 

^(N-1)0      Zt*-(N-l)\ **(W-1)1      Zf**(w-1)2 

^0(M-2)      Zf^0(/W-1) 

^l(M-2) - Zf^l(/W-1) 

X(N-l)(M-2)      Zf^(N-l)(M-l)_ 

(27) 

The length NM space-time adaptive weight vector, for look angle $ and look Doppler 
/t is then given by 

w(<*U) = 
w, 

0 
® 

w "s 

0 
(28) 

The zeros appended to the spatial and temporal weight vectors represent the lost 
DOF in space and time. 

The parameter K above sets a trade off between mainbeam gain and interference 
suppression. By changing the value of this parameter, it is possible to emphasize one or 
the other term. In determining the spatial weights, choosing K = 0 eliminates the 

I 2 
a(ow-2)   = {N-i) witn ^e 

2 

corresponding eigenvector ws = a(0;W_2) /||a(0.w.2)|| .   Therefore, as K-> 0 the D3 weight 

vector approaches the non-adaptive steering vector used in pulse-Doppler processing. 

On the other hand, if *ris chosen to be large, the role of the gain term G is negligible 
and the weight vector is dependent on the interference terms only. This leads to 
emphasis on the suppression of interference at the expense of mainbeam gain. In this 
case, the look direction plays a limited role through the term Zs and the weight vector may 
vary significantly by range cell. 

Note that the adaptive weight vector in Eqn. (28) is obtained using data from the 
primary range cell only. There is no estimation of a covariance matrix and no correlation 
information required to obtain the adaptive weights. This property gives direct data 
domain processing its greatest advantage and its greatest disadvantage. The lack of an 
estimation of correlation allows use of D3 processing in severely non-homogeneous 
situations. However, ignoring correlation information limits its ability to suppress 
correlated interference. A hybrid method to overcome this drawback and combine the 
benefits of statistical and non-statistical (D3) processing will be described in Section 3.1. 
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2.5.1   Performance of D3 Processing in Non-homogeneous Interference 

This section presents a simulation to illustrate the advantages and disadvantages of 
D3 processing. This simulation includes the effects of clutter, barrage noise jammers, 
white noise and a discrete interferer. Table 1 lists the parameters used in the example. 
The jammer and discrete interferer powers are referenced to the noise level. The clutter 
power is fixed by the transmit power and the assumed land reflectivity. The clutter and 
jammers represent correlated interference because these two interference sources are 
homogeneous across all range cells. Note that the discrete interferer is within the target 
range cell only, with an offset from the look direction in angle but not Doppler. Matchin 
the non-homogeneity to the target in one domain makes it more difficult for the D 
algorithm to suppress the non-homogeneity. 

Table 1: Parameters for example using simulated data 

Parameter Value Parameter Value 

Elements (N) 18 Pulses (M) 18 

Element Spacing 0.5X. Pulse repetition frequency 300 Hz 

Array Transmit Pattern Uniform Uncompressed pulse 
width 

400ns 

Mainbeam Transmit 
Azimuth 

Odeg Transmit power 400kw 

Backlobe attenuation 30 Land reflectivity -3.0dB 

Jammer azimuth 
angles 

[-20° 45°] Jammer powers [40 dB 40 dB] 

Target normalized 
Doppler (/,) 

1/3 Jammer Elevation 
angles 

[0° 0°] 

Doppler of interferer 1/3 Interferer power 40 dB 

Angle of interferer -51° Thermal noise power Unity 

ß (Clutter slope) 1 Number of clutter 
patches 

361 

The adapted beam pattern plots presented in this report are the mean patterns over 
200 independent realizations. Vertical bars represent the standard deviation over these 
200 trials. This method was required because the D3 algorithm is non-statistical and 
based solely on a single data set/realization. Operating with the known covariance matrix 
to obtain an ideal pattern, as possible in statistical algorithms, is not an option. 

Figure 20 illustrates the antenna patterns along the target azimuth and Doppler for 
the JDL algorithm. In the angle plot, note the high sidelobe in the direction of the discrete 
interferer. The discrete interferer is within the primary range cell and so does not 
contribute to the covariance matrix estimate and therefore cannot be nulled by a purely 
statistical algorithm such as JDL. However, the angle plot shows the JDL algorithm does 
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place deep nulls in the direction of the white noise jammers at -20° and 45°. The Doppler 
plot shows the deep null placed at zero Doppler frequency corresponding to mainbeam 
clutter. These two figures illustrate the effectiveness of the JDL algorithm in suppressing 
correlated interference such as jamming and clutter. However, they also illustrate the 
inability of a purely statistical algorithm to suppress point non-homogeneities (discretes). 

■80 

Noise Jammers 

•SO   -80   -70   -60   -50   -40   -30   -20   -10     0     10    20    30    40    50    60    70    80    90 
Angle 

Figure 20: JDL Antenna Patterns at Target Doppler and Azimuth 
(a) Angle Pattern (b) Doppler Pattern 
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Figure 21: Direct Data Domain Patterns at Target Doppler and Azimuth 
(a) Angle Pattern (b) Doppler Pattern 

Figure 21 plots the antenna patterns resulting from the implementation of the two- 
dimensional D3 algorithm. The angle plot shows that the D3 algorithm places a null in the 
direction of the discrete interferer. The adapted spatial beam pattern shows a distinct null 
in the direction of the discrete interferer at -51 °, i.e. the algorithm is effective in countering 
a discrete interferer within the range cell of interest. However, the figure also illustrates 
the limitations of the D3 algorithm. The nulls in the direction of the jammers are not as 
deep as in the case of JDL. The Doppler plot shows a shallow null in the direction of the 
mainbeam clutter. In summary, D3 algorithms do not suppress correlated interference as 
well as statistical algorithms, however they are an excellent processing technique to deal 
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with non-homogeneities.   Later in this report, we present results from combining the 
benefits of D3 and statistical algorithms. 

3.0 GMTI-STAP Status 

This section details the on-going research undertaken with the support of DARPA. 
The research presented here is a continuation of the work presented in Section 2.0 
addressing some of the issues raised. We developed a hybrid algorithm combining non- 
statistical and statistical adaptive processing and use this algorithm to develop the 
simplest formulation for a comprehensive, practical, approach to STAP. This 
formulation accounts for all the real world effects listed in Section 2.0. 

Section 2.5 discusses non-statistical adaptive processing in non-homogeneous 
environments, pointing out both the advantages and drawbacks of such an approach. 
Here we present a unique formulation combining the benefits of non-statistical and 
statistical processing. This hybrid algorithm, presented in section 3.1, is a two-stage 
algorithm combining the two approaches. The issues of non-homogeneous data, non- 
homogeneity detection and the hybrid algorithm lead to a formulation using Knowledge 
Based STAP (KB-STAP). Section 3.2 presents the KB-STAP concept and simplest KB- 
STAP formulation. The examples presented in this section show the huge 
improvements in performance over traditional STAP algorithms and prove the 
importance of the issues raised in this report. Section 3.3 presents further 
enhancements to KB-STAP, incorporating map data to inform the decision making 
process within the knowledge base. 

3.1 Hybrid (D3/JDL) STAP 

Performance degradation of STAP algorithms due to non-homogeneous data occurs 
in two forms. In one form the secondary data is not i.i.d., leading to an inaccurate 
estimate of the covariance matrix. For example, the clutter statistics in urban 
environments fluctuate rapidly with range. To minimize the loss in performance due to 
non-homogeneous sample support, a NHD may be used to identify secondary data cells 
that do not reflect the statistical properties of the primary data. These data samples are 
then eliminated from the estimate of the covariance matrix. 

The second form of performance loss is due to a discrete non-homogeneity within the 
primary range cell. For example, a large target within the test range cell but at a different 
angle and/or Doppler appears as a false alarm at the look angle-Doppler domain. Other 
examples include a strong discrete non-homogeneity, such as a large building (corner 
reflector), in the primary range cell. These false alarms appear through the sidelobes of 
the adapted beam pattern. The secondary data cells do not carry information about the 
discrete non-homogeneity and hence a statistical algorithm cannot suppress discrete 
(uncorrelated) interference within the range cell under test. The example presented in 
Section 2.5.1 illustrated the impact of such a non-homogeneity. 
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The inability of statistical STAP algorithms to counter non-homogeneities in the 
primary data motivates research in the area of non-statistical D3 algorithms, such as that 
described in Section 2.4. These algorithms use data from the range cell of interest only, 
eliminating the sample support problems associated with statistical approaches. 

The main contribution of this section is the introduction of a two-stage hybrid STAP 
algorithm combining the benefits of both non-statistical and statistical methods. The 
hybrid approach uses the non-statistical algorithm of Section 2.4 as a first-stage filter to 
suppress discrete interferes present in the range cell of interest. This first stage serves 
as an adaptive transform from the space-time domain to the angle-Doppler domain and is 
followed by JDL processing in the second stage. The adaptive transform replaces the 
steering vector based non-adaptive transform used in Section 2.3. The second stage is 
designed to filter out the residual correlated interference [15]. 

3.1.1   Two-Stage Hybrid Algorithm 
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Figure 22: Block diagram of the Two-Stage Hybrid Algorithm 
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Consider the general framework of any STAP algorithm. The algorithm processes 
received data to obtain a complex weight vector for each range bin and each look 
angle/Doppler. The weight vector then multiplies the primary data vector to yield a 
complex number. The process of obtaining a real scalar from this number for threshold 
comparison is part of the post-processing and not inherent to the algorithm itself. The 
adaptive process therefore estimates the signal component in the look direction and 
hence the adaptive weights can be viewed in a role similar to the non-adaptive steering 
vectors, used to transform the space-time data to the angle-Doppler domain. 

The JDL processing algorithm begins with a transformation of the data from the 
space-time domain to the angle-Doppler domain. This is followed by statistical adaptive 
processing within a LPR in the angle-Doppler domain. The hybrid approach uses the D3 

weights, replacing the non-adaptive steering vectors used earlier. By choosing the set of 
look angles and Dopplers to form the LPR, the D3 weights perform a function analogous 
to the non-adaptive transform. As shown in Figure 22, the D3 algorithm serves as a first 
stage adaptive transformation from the space-time to the angle-Doppler domain. 

JDL statistical processing in the angle-Doppler domain forms the second stage of 
adaptive processing to filter the residual correlated interference. The D3 algorithm is used 
repeatedly with the % look angles and the Tjd look Doppler frequencies to form the LPR. 
The space-time data is transformed to the LPR in the angle-Doppler domain using these 
adaptive weights. Using the D3 weights from Eqn. (28), the transformation matrix of Eqn. 
(20) in Section 2.3 for (^>_1,(p0,<p1;r}a = 3) and three Doppler bins {f_x,f0,fx;T]d =3) is now 

given by the MNx9 matrix 

T = [w(^, f_,) w(^, f0) w(^, f,) 

w(M-i) wfo,,f0) w(0o,O (29) 

wfa,^) wfa,f0) wfa,0l 

This adaptive transformation is noninvertible, resulting in some information loss. 
However, this information loss may be beneficial. The hybrid algorithm takes advantage 
of this loss to suppress discrete interferes within the range cell of interest. The 
advantages associated with the JDL algorithm, such as in reduction in the required 
secondary data support, carry over to the hybrid algorithm. 

The same transformation matrix T is used to transform the primary and secondary 
data to the angle-Doppler domain. Furthermore, the steering vector s is also transformed 
to the angle-Doppler domain using this transformation matrix in conjunction with Eqn. 
(21). Unlike the JDL algorithm, this transformation matrix changes from range cell to 
range cell. The hybrid algorithm therefore has a significantly higher computation load 
than the JDL algorithm. The hybrid algorithm forms the adaptive transformation matrix as 
given by Eqn. (29) for each range cell and then transforms this primary and associated 
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secondary data to the angle-Doppler domain.  This process is repeated for each range 
cell. 

3.1.2  Example 1: Simulated Data 

The first example uses the same data as presented in Section 2.5.1 to illustrate the 
performance of the D3 method. There it was shown that the D3 algorithm can suppress a 
discrete interference source well, but does not do as well against correlated interference 
such as white noise jamming and clutter. This example shows the performance of the 
hybrid algorithm in the same case. 

Figure 23: Three D3 spatial beams used to form LPR 

This example uses 3 angle bins and 3 Doppler bins, i.e. 3x3 LPR. The emphasis 
parameter /eis chosen to be (NM)VZ. Figure 23 plots the spatial beam patterns associated 
with the three beams used to form the LPR in angle-Doppler domain. Note that the three 
beams are separated by a chosen beamwidth of 6.5°. All three patterns show a null in the 
direction of the discrete interferer at angle -51°. These beams illustrate the benefits of 
using the D3 algorithm as the first stage. The algorithm suppresses discrete interference 
and the data transformed the angle-Doppler domain is free of the effects of discretes in 
the spatial sidelobes. 
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Figure 24 plots the antenna beam patterns resulting from the use of the hybrid 
algorithm. The figure shows that the hybrid algorithm combines the advantages of both 
statistical and non-statistical adaptive processing. The adapted angle pattern shows deep 
nulls at -21 °, 45°, and -51 °, the directions of the two jammers and the discrete interferes 
Furthermore, the adapted pattern has a deep null at w=0 resulting in effective nulling of 
the mainbeam clutter. The hybrid algorithm therefore suppresses correlated interference 
such as clutter and jamming and uncorrelated interference such as the strong interferer in 
the primary range cell. 
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Figure 24: Hybrid Algorithm Patterns at Target Doppler and Azimuth 
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3.1.3  Applying the Hybrid Algorithm to Measured Data 

This section presents two examples of the application of the hybrid algorithm to 
measured data. The examples use data from the MCARM database. The examples use 
two acquisitions (acquisitions 575 and 152 on flight 5) to illustrate the suppression of 
discrete interference in measured data. 

Before the hybrid algorithm can be applied to the MCARM database, array effects 
must be accounted for. The D3 method was developed in Section 2.5.1 for an 
equispaced, linear array of point sensors. This allowed for the assumption of no mutual 
coupling between the elements and that, for each pulse, the target signal advances from 
one element to the next by a constant spatial multiplicative factor zs. This, in turn, allowed 
for the crucial assumption of the elimination of the target signal in the entries of the 
interference matrix. 

The MCARM antenna is an array of 22 elements arranged in a rectangular 2x11 
grid. For a rectangular array these assumptions are invalid. Furthermore, as shown in 
Section 2.3.1, a real array is affected by mutual coupling and the spatial steering vector 
must be measured. Figure 13 plots an example of the measured steering vectors 
provided with the MCARM database. 

Here we compensate for the mutual coupling using the measured steering vectors 
(similar to the approach used in Section 2.2 for the JDL algorithm). Equation (13) 
indicates that the spatial steering vector at broadside {<p = 0) is given by a(0 = 0)=[1 1 ...1 
1]r. In the absence of mutual coupling, this steering vector at broadside is valid for arrays 
in any configuration. The approach then is to artificially rotate all the data, using the 
measured spatial steering vector, to force the look direction to broadside. This 
compensates for the rectangular array configuration and the mutual coupling associated 
with the look direction. The rotation is achieved by an entry-by-entry division of the 
received voltages at the array level with the measured spatial steering vector 
corresponding to the look direction. Using pseudo-MATLAB® notation, this operation can 
be represented by 

x(m) = x(m)./aM, (30) 

where x(m) represents the N returns from the mh pulse in a CPI and am(<pt) represent 
the measured steering vector corresponding to the look direction <pt- This operation is 
repeated for all pulses in all range bins. 

The division operation of Eqn. (30) forces the effective spatial steering vector for any 
look direction to be a(<p = 0)=[1 1 ...1 1]r. equivalent to broadside in an ideal array. The 
hybrid method as developed above is applied to the 'rotated' data with broadside as the 
look direction. 
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3.1.4  Example 2: Injected Target in MCARM Data 

In this example, a discrete non-homogeneity is introduced into the data by adding a 
strong fictitious target at a single range bin, but not at the look angle-Doppler. Two cases 
are considered within this example; no injected target and an injected weak target. The 
first case illustrates the suppression of the discrete non-homogeneity. In the second 
case, a weak target is injected at the same range bin as the non-homogeneity, but at the 
look angle and Doppler. This case illustrates the ability of the hybrid algorithm to detect 
weak targets in the presence of strong discrete non-homogeneities. The data is the same 
as used earlier in this report to illustrate the performance of the JDL algorithm. In this 
case, only 22 of the 128 pulses in the CPI are used, i.e. N=22, M=22. The value of the 
emphasis parameter is K= (NMf2. 

The details of the injected non-homogeneity and weak target are shown in Table 2. 

Table 2: Parameters for injected non-homogeneity and target in MCARM Data 

Parameter Non-homogeneity Target 

Amplitude 0.0241 0.000241 

Angle bin 35 65 (broadside) 

Doppler bin -3 -2 

Range bin 290 290 

41 



280 290 300 
Range Cell 

Figure 25: Performance of Hybrid algorithm in countering non-homogeneities: Injected Target 
(a) With Non-homogeneity, No target (b) With non-homogeneity, With target 

The hybrid algorithm is applied to the data from the range bin with the non- 
homogeneity and surrounding range bins. The output MSMI statistic from the second 
stage of the hybrid algorithm is plotted as a function of range. In this example, five 
Doppler bins and five angle bins form the LPR for both the JDL algorithm and the second 
stage of the hybrid algorithm. One hundred secondary data vectors are used to estimate 
the 25x25 covariance matrix. 

For the case without an injected target, Figure 25(a) compares the output from the 
JDL algorithm with the output of the hybrid algorithm. As can be seen, the JDL algorithm 
indicates the presence of a large target in the look direction (angle bin 65). This is 
because the large non-homogeneity at angle bin 35 and Doppler bin -3 is not suppressed 
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by the statistical algorithm, leading to false alarms at the look direction. On the other 
hand, the hybrid algorithm shows no target at broadside. The non-homogeneity is 
suppressed in the first D3 stage and residual clutter is suppressed in the second JDL 
stage. 

A synthetic target injected at the look direction and Doppler illustrates that sensitivity 
of the hybrid algorithm to weak targets. The parameters of the weak target are listed in 
Table 2. Figure 25(b) compares the output of the two algorithms in the case of a strong 
non-homogeneity and a weak target. The JDL algorithm again shows the presence of a 
strong target in the look direction. However from Figure 25(a), we know that the strength 
of the statistic is caused by the non-homogeneity. On the other hand, the plot for the 
hybrid algorithm shows the statistic at the target range bin is 6.9 dB above the next 
highest peak. 

This example shows that the hybrid algorithm may be use to detect a weak target in 
the presence of a discrete non-homogeneity within the range cell of interest. This is a 
unique capability compared to all other STAP approaches. 

3.1.5   Example 3: MTS Tones in the MCARM Data: 

Certain acquisitions within the MCARM database include signals from a moving 
target simulator (MTS) at known Doppler shifts. One of these acquisitions was used in 
Section 2.3.3 to illustrate the benefits of accounting for array effects. In acquisition 152 on 
flight 5, the MTS tones occur in angle bin 59. In this example, the look direction is set to 
angle bin 85 for a mismatch (with the MTS direction) and the JDL and hybrid algorithms 
are applied to the same acquisition. For this look direction, the MTS tones at angle bin 59 
act as strong targets at a different angle bin, i.e. discrete non-homogeneities. As in 
Example 1, two cases are considered; no injected target and a weak injected target. The 
first case illustrates the suppression of the MTS tones acting as discrete, strong non- 
homogeneities. The second case illustrates the sensitivity of the hybrid algorithm to weak 
targets. This example uses all 128 pulses in the CPI, i.e. N = 22, M = 128. The 
emphasis parameter for the direct data domain method is set to a large value of K= (NM) 
3/2 
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Figure 26: Performance of Hybrid algorithm in countering non-homogeneities: MTS Data (a) 
With Non-homogeneity, No target (b) With non-homogeneity, With target 

In this acquisition, the MTS tones are in range bin 449-450 with the strongest tone at 
a Doppler corresponding to bin -53 and angle bin 59. The example focuses on the 
suppression of this tone. Figure 26(a) plots the MSMI statistic of the two algorithms for 
the case without any artificial injected targets. The JDL algorithm detects a large target at 
range bins 449 and 450. This false alarm is due to the strong MTS tone at angle bin 59 
even though the look direction is set at angle bin 85. The hybrid algorithm, however, 
suppresses the strong MTS tone, showing no activity at range bins 449 and 450. 

Figure 26(b) plots the results of using the two algorithms to detect a weak target 
injected into range bin 450. The parameters of the weak target are; magnitude: 0.0001, 
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Doppier bin:   -53, angle bin:   85.   This weak target is easily detected by the hybrid 
algorithm with the statistic at the target range bin 9.8 dB above the next highest peak. 
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Figure 27: Beam Pattern associated with the Hybrid and JDL methods 

The beam patterns associated with the two algorithms illustrate the improvement in 
using the D3 algorithm as the first stage of a two-stage hybrid method. Figure 27 plots the 
spatially adapted beam pattern at the look Doppler frequency for the JDL and hybrid 
algorithms. The plot for the hybrid algorithm shows the deep null in the adapted pattern 
of the hybrid algorithm near angle bin 59 while the JDL pattern does not show such a null. 
In applying the JDL algorithm to the MCARM data acquisition with MTS tones, the strong 
tones leak through the sidelobes of the adapted pattern, leading to false alarms. 

3.1.6  Summary 

This section presented the hybrid algorithm, developed specifically for the non- 
homogeneous data case. Statistical algorithms cannot suppress discrete non- 
homogeneities because the secondary data possesses no information regarding such 
interference. The D3 method, presented earlier, however can suppress such discrete 
interference. However, performance of D3 algorithms in homogeneous interference 
scenarios is inferior to traditional statistical STAP algorithms. Each of these two 
approaches to STAP has its own area of application. 

The proposed two-stage hybrid algorithm alleviates this drawback by implementing a 
second stage of statistical processing after using the D3 algorithm as an adaptive 
transform to the angle-Doppler domain. This algorithm combines the advantages of both 
the statistical and non-statistical approaches. The D3 method is particularly effective at 
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countering non-homogeneous interference. The statistical STAP algorithm then improves 
on the suppression of the residual correlated interference. 

Even with ad hoc compensation for mutual coupling, the hybrid algorithm shows a 
significant improvement over statistical methods in suppression discrete non- 
homogeneities. We anticipate a true evaluation of the mutual coupling would improve the 
performance of the hybrid algorithm. 

3.2     Knowledge Based Processing 

The field of Space-Time Adaptive Processing has received much interest in the past 
30 years. The sum total of the research is extensive, with several classes of algorithms, 
some practical and others not so practical. In addition, interesting new algorithms [16] and 
algorithms that address particular interference situations [17] are being continually 
developed. What is clear is that there is no single algorithm that is optimal in all 
interference scenarios. In a relatively homogeneous scene, an algorithm such as FA- 
STAP may be best, while in a non-homogeneous scene JDL may be the best or even 
possibly the D3 algorithm in an extremely non-homogeneous case. All statistical 
algorithms require the estimation of a covariance matrix. In a non-homogeneous scene, 
the choice of the secondary data has a huge impact on the performance of the algorithm. 
It is essential that in a real world situation the secondary data be chosen properly. 

 -(      Knowledge Base    J 
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Hybrid Algorithm 
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training Strategy Statistical Algorithms 
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Figure 28: Knowledge Based Space-Time Adaptive Processing (KB-STAP) 
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This research therefore heads towards the concept of Knowledge Based STAP (KB- 
STAP). KB-STAP [18] chooses the best of several possible STAP algorithms for 
detection with knowledge-based control of algorithm parameters and selection of 
secondary data using NHDs. The basic elements of a comprehensive KB-STAP 
formulation are shown in Figure 28. Any comprehensive algorithm for practical 
implementation of STAP requires at least three elements: a non-homogeneity detector to 
separate the received data into homogeneous and non-homogeneous sectors, a 
statistical algorithm for use within the homogeneous sectors and a hybrid algorithm for 
use within the non-homogeneous sector. This section presents the performance 
improvements possible using such a combined scheme [19]. 

The combined approach is tested using data from the MCARM database. As 
described earlier, each CPI comprises the data corresponding to 22 digitized channels 
and 128 pulses at a PRF of 1984 Hz. The datacube comprises 630 range cells, sampled 
at 0.8ns. Each range bin, therefore, corresponds to 0.075miles. The array operates at a 
center frequency of 1.24GHz. Included with each CPI is information regarding the 
position, aspect, velocity and mainbeam transmit direction. This information is used to 
correlate target detections with ground features. 

The example illustrates the issues addressed in this report, namely non- 
homogeneities and the use of the appropriate processing algorithm in appropriate 
portions of the radar data cube. Non-homogeneity detection is accomplished using JDL 
assuming homogeneous data. Any range bin with a statistic above a chosen threshold is 
considered non-homogeneous. The statistical algorithm is JDL again, though in the 
second stage only homogeneous data is used in the sample support. The hybrid 
algorithm also uses only homogeneous data for sample support in second stage. 

This example uses data from acquisition 575 on flight 5. While taking this acquisition 
the radar platform was at latitude-longitude coordinates of (39.379°, -75.972°), placing the 
aircraft close to Chesapeake Haven, Maryland, near the Delmarva peninsula. The plane 
was flying mainly south with velocity 223.78mph and east with velocity 26.48mph. The 
aircraft location and the transmit mainbeam are shown in Figure 29. The mainbeam is 
close to broadside. Note that the mainbeam illuminates several major highways. 

47 



Figure 29: Location and transmit direction of the MCARM Aircraft during the acquisition 

In addition to the targets of opportunity on the roadways illuminated by the array, we 
inject two artificial targets at closely spaced range bins to illustrate the effects of non- 
homogeneities in secondary training data. Based on the measured steering vectors and 
chosen Doppler shifts the response of the two simulated targets may be calculated. The 
artificial targets are injected in range bins 290 and 295. In this acquisition the transmit 
pulse is zero-shifted to range bin 74, i.e. the targets are at ranges of 16.2miles and 
16.575miles respectively. The parameters of the injected targets are: 

Table 3: Parameters of the injected targets 

Target 1 Target 2 

Amplitude 1 xlfJ4 Amplitude 1 x10_3 

Range bin 290 Range bin 295 

Doppler Bin -9 = 137.5Hz Doppler Bin-9 = 137.5Hz 

Angle 1° Angle 1° 

Note that the two targets are at the same Doppler frequency and the second target is 
20dB stronger than the first. 

This example uses 3 angle bins and 3 Doppler bins (a 3x3 LPR) in all stages of 
adaptivity, including the JDL-NHD. Thirty-six secondary data vectors are used to estimate 
the 9x9 angle-Doppler LPR covariance matrix. In addition, two guard cells are used on 
either side of the primary data vector. Based on these numbers, without a NHD stage, 
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range bin 295 would be used as a secondary data vector for detection within range bin 
290. The example compares the results of using the JDL algorithm without non- 
homogeneity detection and the combined approach illustrated in Figure 28. 
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Figure 30: JDL Processing without accounting for non-homogeneities 

Figure 30 presents the results of using the JDL algorithm without any attempt to 
remove non-homogeneities from the secondary data support. The range-Doppler plot is 
of the MSMI statistic after applying a threshold. In producing this figure, a threshold of 40 
is used, i.e. any Doppler-range bin with a MSMI statistic greater than 40 (amplitude not in 
dB) is said to contain a target while any Doppler-range bin with a statistic below 40 is 
declared target free. The plot is for adaptive processing between range bins 150 and 350, 
i.e. ranges between 5.7 and 20.7 miles and all 128 Doppler bins. Due to platform motion 
the radar is approaching the declared targets at a speed of 26.48mph. 

As is shown later, certain range bins that are declared to contain a target can be 
correlated with the map in Figure 29 as corresponding to roadways. However, this 
approach results in several false alarms including several at extremely high radial 
velocities. In addition, the first injected target at range bin 290 is not detected. This is 
because of the presence of the larger target at range bin 295 in the secondary data when 
range bin 290 is the primary data. 

Figure 30 clearly illustrates the need for a stage to identify non-homogeneities and 
eliminate them from the secondary data support. Applying STAP to measured data 
results in several false alarms and the possibility of targets in the secondary data masking 
weak targets. The processing structure of Figure 28 addresses this need. 
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In the implementation used in this paper, a JDL-NHD is used to identify non- 
homogeneous range cells. A range cell is considered to be non-homogeneous if the JDL- 
MSMI statistic is above 18.52, significantly lower than the threshold of 40 used to 
generate Figure 30. Assuming Gaussian interference, using 36 secondary data vectors to 
estimate a 9x9 covariance matrix to obtain an MSMI statistic, this threshold corresponds 
to a false alarm rate of Pfa=10"4. Note that the true false alarm rate using measured data 
is significantly higher. 

The combined algorithm uses JDL processing in those cells declared homogeneous 
and hybrid processing in those cells declared non-homogeneous. Again, a 3x3 LPR is 
used, both in the JDL algorithm and in the Hybrid algorithm. In the second application of 
the JDL algorithm in homogeneous range cells, only other homogeneous cells are used 
for sample support. Within the non-homogeneous cells, a hybrid algorithm is used, i.e. 
the D3 algorithm is applied 9 times for 3 angle and 3 Doppler look directions, using the 
same primary data. The angle-Doppler data so obtained is used for further JDL 
processing. Homogeneous cells are used to obtain sample support for the second stage 
JDL processing. 

Figure 31 shows the result of using the combined approach. Notice the significantly 
fewer false alarms than in Figure 30 when using a purely statistical algorithm without non- 
homogeneity detection. In essence the hybrid algorithm is applied to all those 
range/Doppler bins where the JDL-MSMI statistic is greater than 18.52. The use of the 
hybrid algorithm suppresses the non-homogeneities thereby significantly reducing the 
false alarms. 
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Figure 31: Combined processing accounting for non-homogeneities 
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In addition, the weaker injected target is detected since the stronger target at range 
bin 295 is eliminated from the sample support for range bin 290. Furthermore, the range 
bins of most target detections can be directly correlated with the state highways in 
Maryland and Delaware. Routes 299 and 301 in Maryland are closely spaced at a range 
of 9.0 and 9.8 miles. Note that the aircraft is moving due east at a speed of 26.48mph. 
The ground speed of the targets is therefore approximately 50mph towards and away 
from the aircraft. 

The range of the several target detections at the far range shown in the plot, 
approximately 20miles, is not immediately attributable to Route 9 in Delaware. At 
broadside, Route 9 is at a range of 21 miles. The detected targets are between 19.4 and 
20.4 miles. However, note that Route 9, north-south at broadside curves and has a short 
east-west section within the 3dB mainbeam. The distance to this section is between 19.1 
and 20.6 miles. These targets are detected at these range bins and are present in both 
Figure 30 and Figure 31. 

At a range of approximately 11 miles is a strong detection. Accounting for the aircraft 
motion, this detection has zero ground velocity. This corresponds to the town of Van 
Dyke. 

This section has presented a comprehensive approach to STAP incorporating the 
essential elements of a practical scheme: non-homogeneity detection, a statistical 
algorithm for STAP in homogeneous cells and the hybrid algorithm for STAP in non- 
homogeneous cells. The example illustrates the importance of these concepts to the 
GMTI case. This scheme yields huge performance improvements over the traditional 
STAP algorithm, as applied to real measured data. 

The next section presents a formulation to include a priori map data to enhance 
the KB-STAP concept. 

3.3      MAP-STAP 

The formulation presented in the literature uses only one statistical algorithm in 
homogeneous range cells. To maximize STAP performance, in the long term KB-STAP 
will choose from several algorithms. The knowledge base processor, using information 
from diverse sensors, will determine the choice of algorithm to best match the 
interference scene. For example, in a non-homogeneous scene JDL may be used while 
in the case of terrain scattered interference, a 3-D spatial/fast-time/slow-time algorithm 
may be used. 
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Figure 32: Sources of Information for KB-STAP 

The KB processor exploits all available information. Figure 32 presents some of the 
possible knowledge sources: other sensors (e.g. AWACS), land use data, previous 
passes over the same radar scene and feedback from the tracking and other stages. The 
open problem is how to fuse all this information together and improve STAP performance. 
We present the use of one such information source: a priori map data. 

This philosophy is to determine the terrain illuminated by the radar that best matches 
the terrain in the primary range cell and at the Doppler of interest, i.e. secondary data that 
best matches the clutter in the primary range cell. The best source of this information is 
maps. Using maps to choose the secondary data allows the KB processor to exploit "what 
the radar is seeing". 

This section presents a detailed description of the MAP-STAP [20]. Section 3.3.1 
discusses the difficulty in choosing secondary data for estimation of a clutter covariance 
matrix in non-homogeneous clutter environments. This section concludes with an 
approach for easing this difficulty in adaptive post Doppler processing. Section 3.3.2 
presents a description of our a priori data approach to estimate the clutter covariance 
matrix in non-homogeneous environments. Section 3.3.3 presents our stated research 
problem, hypothesis, and preliminary findings. Section 3.3.4 presents our conclusions 
and recommended future work. 
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3.3.1   Representative Secondary Clutter Data 

ith Assume the test cell in which a target is to be detected is located in the r range ring 
as shown in Figure 33. Since Ri, the clutter covariance matrix of the Ith range ring is 
unknown, the objective is to select secondary data from other range rings in order to 
estimate Ri. Suppose attention is focused on the (l')th range ring where M. The question 
that arises is, "Is the clutter in the (l')th range ring representative of the clutter in the Ith 

range ring?" This will be the case provided that to each clutter patch in the Ith range ring 
having a specific mean-square complex amplitude magnitude and a specific pair of 
normalized Doppler and spatial frequencies there is a corresponding clutter patch in the 
(l')th range ring having approximately the same mean-square complex amplitude and 
approximately the same normalized Doppler and spatial frequencies. 

Test Range 
Ring 

Doppler Curve of 
Interest 

120 Meters 
/  Doppler Curve of 

Interest 

Figure 33: Range Ring and Doppler Patch Model with Constant Frequency Hyperbola 

Consider the (k')th clutter patch in the (l')th range ring. The normalized Doppler and 
spatial frequencies associated with this clutter patch are 

0)lk,= 
* r Ao 

cos&'Sin^, 
(31) 

vlk.=—cos Oe sin Qx 
Ao 

Let the normalized Doppler and spatial frequencies for a clutter patch equal (o0 and 
•Do, respectively. Assuming a flat earth, the constant Doppler frequency contour for coo is 
the hyperbola given by 
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\(^f-ao\£-vWc=w0h
2, (32) 

TrÄo 

where h is the height of the airborne platform and {Xc, yc) are the coordinates of the 
clutter point scatterer. Similarly, the constant spatial frequency contour for t»0 is the 
hyperbola given by 

[(^-f-V^t-vlfcvlh2 ■ (33) 
/to 

Using the fact that co0 = (2va/frd) u0, it can be shown that the hyperbola given by Eqn. 
(32) is identical to the hyperbola given by Eqn. (33). 

Even though the pairs of normalized Doppler and spatial frequencies remain invariant 
from one range ring to another and even if clutter patches are identified such that ©iv = 
o)|k, it is unlikely in a non-homogeneous clutter environment that E[ | one 12] = E[ I ocik 12] for 
all Nc pairs of clutter patches in the two range rings. In fact, unless the clutter is entirely 
homogeneous in both range rings, the clutter in the (l')th range ring will not be 
representative of the clutter in the Ith range ring over the entire clutter ridge. 

The concept of representative secondary clutter data, however, may be meaningful 
on a selective basis. For example, consider post-Doppler adaptive beamforming in which 
nonadaptive Doppler filtering is first performed separately on the M pulses from each 
array element. In effect, this produces at each array element the output of M Doppler 
filters which subdivide the normalized Doppler frequency interval into M contiguous 
Doppler bins. For each of the M Doppler bins, adaptive spatial filtering is subsequently 
performed to reduce the residual clutter. Because the residual clutter in normalized 
Doppler and spatial frequencies is confined to a localized region along the clutter ridge, it 
is no longer necessary that the range ring from which secondary data is being collected 
be equivalent in its entirety to the primary range. Now the clutter in only a few patches of 
each range ring need be equivalent i.e. those that lie along the same Doppler ridge. 

To assist us in building and testing our methodology for selecting equivalent range 
rings we are using data gathered under the MCARM program. We chose this data 
because of its varied and heterogeneous clutter environment. 

3.3.2  A Priori Information 

This section presents a detailed discussion of the use of a priori map data derived 
from US Government databases. We are assuming that the interference limiting a side 
looking airborne radar is due to ground and angel clutter. These reflections are due to 
static and dynamic objects. Dynamic objects move during an airborne radar's mission 
e.g. cars, buses, trucks, trains and flying objects such as aircraft, balloons, and birds. 
Static objects are the earth and man made objects on the earth that do not change rapidly 
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over time e.g. buildings, roads, power lines, and bridges. For this effort we are concerned 
with static objects and associated a priori data. 

The results presented here focus on the MCARM database. Data has been obtained 
for the Delmarva Peninsula from the United States Geological Survey (USGS) and the 
National Imagery and Mapping Agency (NIMA). The USGS has three types of data that 
are of interest with varying levels of precision. The Land Use and Land Cover (LULC) 
data describe the earth based upon a classification system with 9 major codes and 38 
minor codes. The Digital Line Graph (DLG) data describe the features of the earth by 
bounding them with polygons described by curved or straight lines. There are 305 
features. The NIMA databases are similar to the USGS except they provide more precise 
and more detailed data than the USGS. We have written software to translate these 
data, defined a database schema for both, loaded their data within a relational Database 
Management System (DBMS), and written software that registers the beam patterns of 
the MCARM radar upon the earth. Given the results of this work one can now query and 
render their data in 2-D and 3-D depicting them in a virtual reality world using a Beta 
version of Virtual Reality Modeling Language (VRML). The user "sees what the sensor is 
seeing". 

The approach we have taken is to classify each of the patches on the earth within the 
surveillance volume. Those patches that lie along the Doppler of interest and have the 
same classification as DIC1 (Figure 33) are candidate rings for secondary data. 

There are different data sources available for classifying the contents of patches. 
Since the Delmarva Peninsula is relatively flat (within a 500 square mile area the 
elevation varies less than 90 meters), we did not include DEM data and we focused on 
LULC data. The LULC data we are concerned with are the latitude (lat) and longitude 
(Ion) for points on the earth and their LULC codes. The data file we used provides this 
data for each 200x200m area. Note that the range resolution of our MCARM radar is 120 
meters! For our algorithm, patches that have the same major code are considered 
equivalent, even though one may have a road in it and one may not, or one may contain 
streams and the other a lake. 

3.3.3  Research Problem, Hypothesis, and Preliminary Findings 

To determine if post Doppler STAP performance can be improved upon by choosing 
secondary data locations from maps, we compare our results with the standard sliding 
window approach. The sliding window algorithm chooses the first KI2 range rings further 
than the test ring and the first KI2 range rings from the test ring and closer to the radar, 
minus the two range rings next to the test range ring. (K is twice the number of 
independent channels of the MCARM radar i.e. 44.) See Figure 17(a). The sliding 
window algorithm has an implicit assumption that the nearby range rings of the test ring 
are homogeneous and are representative of the test ring. Based on the registration of the 
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aircraft on the ground (Figure 34), our algorithm chooses range rings their LULC codes 
compared to the interfering Doppler patch within the test ring. Note, only patches that lie 
on the same Doppler curve of interest are considered. 
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Range Bin 

Figure 35: MSMI Output With No Injected Target 
(a) Using Sliding Window Algorithm (b) MAP STAP Algorithm 

It was our hypothesis that MAP STAP would do as well as the sliding window 
algorithm in homogeneous environments and would do better than the sliding window 
approach for areas where the ground is heterogeneous. To test our hypothesis, a target 
was injected at different range rings with the same radial velocity of 31 m/s (i.e. Doppler 
bin 17). The only difference in the implementation of the two algorithms was in the choice 
of the secondary data. Preliminary results, using the Modified Sample Matrix Inversion 
(MSMI) algorithm, are shown below. The MSMI statistic, which has an embedded CFAR 
property [7], is computed for each range ring of interest after Doppler processing. 
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Figure 36: MSMI Output With injected Target at Range Bin 475 
(a) Using Sliding Window Algorithm (b) MAP STAP Algorithm 

Figure 35 represents the MSMI for the two algorithms without an injected target. The 
mean and variance of the results are slightly smaller for MAP STAP than for the sliding 
window algorithm. If a threshold of 20 db were chosen, then the MAP STAP would detect 
fewer false alarms than the sliding window algorithm. 

To test our hypothesis that the MAP STAP algorithm would perform the same as the 
standard algorithm when a target occurred in a homogeneous clutter environment, we 
injected a target in range bin 475. Figure 36 shows the result of the sliding window 
algorithm and for MAP STAP. It was conjectured that MAP STAP would do as well as the 
sliding window algorithm and it did. 
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Figure 37: MSMI Output With Injected Target At Range Bin 375 
(a) Using Sliding Window Algorithm (b) Using MAP STAP 
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Figure 38: MSMI Output With Injected Target At Range Bin 296 
(a) Using Sliding Window Algorithm (b) Using MAP STAP 

Figure 37 has the injected target in range bin 375 where the surrounding range rings 
are relatively heterogeneous. Figure 37(a) shows the result of the standard algorithm and 
Figure 37(b) the result for MAP STAP. It was conjectured that the MAP STAP would do 
better than the sliding window algorithm and it did. The same is shown in Figure 38 
where the injected target is in range bin 296. In these two cases, MAP STAP yields fewer 
false alarms. 
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3.3.4  Discussion 

Major issues still need to be explored. The data from the USGS database were 
collected approximately 10 years before the radar data were obtained. It is likely that 
some of the USGS data was not current when the radar data were collected. 

Map precision is also important when the range and angle resolution is significantly 
different from that of the map data. For our experiments radar range was 120 meters and 
the LULC data points were every 200 meters by 200 meters. Even with this difference in 
precision the MAP STAP algorithm performed well. The Delmarva area is relatively flat 
and using LULC data worked well. If however, the terrain is mountainous then the 
algorithm must include digital elevation model data 

4.0 GMTI-STAP Future Work 

Sections 2.0 and 3.0 have presented past and on-going research on the transition of 
space-time adaptive processing from theory to practice. In particular, concepts including 
spatial DOF reduction, array effects, non-homogeneous data were presented, finally 
leading to the KB-STAP concept. Research on MAP-STAP significantly enhances KB- 
STAP, using a priori map data to inform the knowledge base. The adaptive processing 
concepts developed were applied to AMTI and GMTI. 

This section presents proposed future work in the GMTI specific application. GMTI 
requires that additional attention be paid to the specific problem of low target velocity, with 
the target signal competing with mainbeam clutter. 

4.1 D3 ZA STAP 

This near-term task will develop and evaluate a specific algorithm designed to 
address both the clutter non-homogeneity and slow velocity issues. STAP has long been 
known to have hard-to-predict spatial response patterns including very high sidelobes in 
some interference-free regions, loss of mainlobe gain, and significantly shifted mainlobe 
gain. These mainlobe impacts will be of much greater importance when addressing the 
slower targets of the GMTI task and thus must be minimized. The high sidelobes in 
regions that are evaluated by the secondary data to be interference free will make the 
algorithm sensitive to even small clutter non-homogeneities. The excellent performance 
of the ZA algorithm resulted from the low sidelobe of the sum and difference beam 
systems and the low gain of the difference beam in the direction of the target. These 
factors give the SA algorithm a more predictable response pattern. 

The work proposed for the near term will be an attempt to combine the advantages of 
the previous hybrid STAP algorithm (Section 3.1) and the ZA STAP algorithm (Section 
4.1) to better address non-homogeneous clutter.   In addition the delta channels will be 
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chosen to minimize the impact of the adaptive process on the target return, that is, the 
low velocity issues. 

The previous hybrid STAP algorithm employed a direct data domain (D3) algorithm for 
the first stage to suppress discrete non-homogeneities in the range cell under test. This 
algorithm served as an adaptive transformation from the space-time domain to the angle- 
Doppler domain and was followed by a statistical STAP algorithm to filter residual 
correlated interference. The D3 algorithm constrained the antenna gain in the direction of 
the target in angle and Doppler space. If the target is not exactly at the center of the 
antenna mainbeam the target return can be attenuated by this D3 process. A version of 
the D3 algorithm has been developed which maximizes the antenna gain across the 
antenna mainbeam to overcome this attenuation [21]. 

In this new algorithm a D3 process will be developed to constrain both a sum beam 
and a difference beam across the transmit mainbeam and to use these sum and 
difference beams as the first stage of a hybrid algorithm with a statistical algorithm as the 
second stage. Multiple delta beams pointing in different angles within the sum beam will 
be investigated. 
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Figure 39: Sum and Difference D Beam Patterns 

The work of developing a rigorous formulation in evaluating these beams has only 
just begun. Figure 39 illustrates the results of a simple formulation extending the hybrid 
formulation to the XA case. The example presented uses 18 elements and 18 pulses in 
the CPI. An artificial non-homogeneity is injected at angle bin -51 °, while the look angle 
is maintained at 0°. As can be seen, both the sum and difference channels place a null in 
the direction of the discrete interference, while maintaining the desired response at the 
look angle. The sum channel places maximal gain in the look direction, while the 
difference (delta) channel places a null at the look direction. 
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The results shown in Figure 39 are preliminary, but show the promise of investigating 
a D3 EA STAP formulation. The work of formalizing the process of obtaining these sum 
and difference weights is on going and will continue in the near future. 

In the longer term, this D3 Z-A algorithm can be improved by incorporating two 
concepts: first, MAP-STAP can be used to determine the best data samples to be used 
for statistical processing in the second stage. Second, the location of the mainbeam 
clutter ridge is determined a priori by the motion of the aircraft platform. This information 
can be exploited by using a constrained D3 algorithm which places a null (in the Doppler 
domain) at this mainbeam clutter location. This approach should improve the ability of the 
D3 algorithm to suppress correlated mainbeam clutter. 

4.2     Additional Algorithms 

The major difference between GMTI adaptive filtering algorithm and the existing 
AMTI adaptive filtering work is that the clutter competing with the target is coming from 
angles that are in the antenna mainbeam or near-in sidelobes whereas AMTI clutter is at 
angles in farther out sidelobes. Thus the potential for significant impact on the target 
return is greater for GMTI than it was for AMTI. The focus of filtering algorithm 
development will be on algorithms that minimize that effect. Additional effort on hybrid 
algorithms with new versions of the D3 algorithm for the first stage is planned. 

Knowledge-based (KB) processing has been shown to improve both the filtering and 
detection stages of radar signal processing. In both cases the KB part of the processing 
is accomplishing similar functions: selection of optimum algorithm and selection of 
secondary data for the algorithm chosen. The integration of KB processing for the two 
stages including feedback from detection to filtering has potential for additional 
improvement in overall performance. Integrated KB adaptive filtering and 
detection/CFAR will be developed in future efforts. 

4.2.1   Evolutionary Algorithms 

The selection of the best STAP algorithm for a particular real-world environment is 
difficult because of the large number of possibilities and because the environment does 
not satisfy the independent and identical distribution condition that would make theoretical 
solution of the problem possible. Knowledge-based approaches that address the actual 
environment have been shown to perform better than theoretically optimum algorithms in 
these real-world environments. But these KB approaches can not be analyzed from basic 
principles and there are so many possibilities that comparison of all of them appears 
difficult. 

Expert system and knowledge-based technology has also been shown to have 
significant payoff for the other steps in radar signal processing (detection/CFAR, tracking) 
in these same real-world environments [18]. Each step in the signal processing has been 
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investigated separately and the algorithms tested for performance at that phase. Since 
there are dependencies between the performance in step of the processing of the 
previous steps, it seems reasonable that integrated KB processing with feedback 
between stages could have better performance than algorithms developed for each step 
separately. Integrated end-to-end signal processing will have a much greater number of 
algorithm options because more filtering algorithms can be combined with most detection 
algorithms and those combinations can be combined with most tracking algorithms. 

5.0    Roadmap to the Future 

AFRL has produced a plan to develop and transition the technology and 
sensor/platform concepts for the cost-effective surveillance for future GMTI threats in all 
environments. Based on the technology of the DARPA/AFRL program the three-phase 
program will investigate the surveillance of both slower and smaller targets in all clutter 
and countermeasure environments. The focus of the program will be on accomplishing 
the mission on smaller and less expensive platforms. 

Adaptive processing algorithms will be developed to obtain the lowest MDV possible 
for a given size antenna, while improving accuracy and classification performance. This 
adaptive capability will address the real interference environment including clutter from all 
regions of the world including the severe non-homogeneous clutter of urban areas and 
various jammer types including high power noise, 'hot clutter' and deceptive jammers. 

The plan is divided into three programs (Figure 40): technology, maturation (transition 
from the technologist to the developer) and demonstration (transition from the developer 
to the user). 

GMTI STAP 
TECHNOLOGY DEVELOPMENT 

(DARPA & AF 6.2) 

A& ^y \pf      /   GMTI STAP 
v '      TECHNOLOGY 

DEMO & TRANSITION 
(PLATFORM UPGRADE & TEST) 
(AF 6.3, DARPA, & OTHER TBD) 

Figure 40: GMTI STAP Plan 

A roadmap for the technology program is shown in Figure 41. During the first two 
years the technology will focus on GMTI-specific STAP algorithm development, the 
modification of an existing high-fidelity simulation to address specific GMTI issues and 
employment of that simulation to verify the performance of the new algorithms. This two- 
year technology development effort forms the foundation for continued collaboration with 
the developer and the user. The new STAP filtering algorithms will be integrated with 
advanced detection algorithms to improve overall target detection performance.   In the 
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third year of this program ground experiments will be performed using existing AFRL 
facilities to validate algorithm performance and the advanced filtering and detection 
algorithms will be integrated. This integration will use the knowledge-based control to 
optimize all phases of the processing. In the fourth year the integrated algorithms will be 
demonstrated with airborne measurements. Decision points are envisioned before major- 
cost efforts of ground based and airborne testing. 

oo 01 

SCENE-SPECIFIC 
CLUTTER 

LOWMDV 
ADAPTIVE FILTERING 

ADVANCED 
JAMMING 

SIMULATION 

02 03 

GROUND 
EXPERIMENT 

KB FITERING/DETECTION 

ADAPTIVE TRACKING 
TECHNOLOGY 

REAL-TIME 
A/B EXPERIMENT 

INTEGRATED KB 
GMTI ALGORITHMS 

Figure 41: Technology Program Roadmap 
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Figure 42: Technology Maturation Program Roadmap 

The maturation program (Figure 42) will define the new mission requirements, 
develop sensor concepts on various low-cost platforms, evaluate the adaptive processing 
algorithms, define processor requirements and develop design techniques for modular 
radar. The demonstration program will use an airborne demonstration on a smaller and 
less expensive platform to validate the modular sensor and advanced processing 
technologies. Possible platforms include UAV's, including Global Hawk and smaller 
UAV's, and business jets. The three-phase plan (Figure 42 and Figure 43) is integrated 
with decision points at which the parallel progress of the programs can be evaluated and 
with feedback between the three programs. Decision point one will evaluate the progress 
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of the technology. Its exit criteria will be (i) GMTI algorithms developed that provide 
significant performance improvement and (ii) algorithm performance validation by 
computer simulation. Decision point two will evaluate the progress of the technology and 
the maturation efforts. Its exit criteria will be (i) validation of algorithm performance by 
ground experiments and (ii) the development of new GMTI concepts with significant cost 
savings predicted. 

I     00 | 01 02 03 04 

GMTI STAP Technology Development 

NEW ALGORITHMS DEVELOPED 
VALIDATED BY SIMULATION 

• ALGORITHMS VALIDATED 
BY GROUND EXPERIMENT 

GMTI STAP Technology Maturation 

• COST-EFFECTIVE NEW CONCEPT 

GMTI STAP Technology Demo & Transition 
 (Platform Upgrade & Test)  

Figure 43: GMTI STAP Program Roadmap 
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